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pepper, n.

Pronunciation: Brit.  /'peps/,US. /'peper/
Forms: OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare
Frequency (in current use):

Etymology: A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek stérept ); compare Sa

L. The spice or the plant.
1.

a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK
adj. and n. Special uses 5a, PEPPERCORN 7. 1a, and wHITE adj. and n.” Special uses 7b(a).

2.

a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.

c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguigh~ausga ;
C. annuum Longum group, with elongated
taste, the source of cayenne, chilli powder,
perennial C. frutescens, the source of Taba
(more fully sweet pepper): any variety of -
group, with large, bell-shaped or apple-she
usually ripening to red, orange, or yellow a
cooked as a vegetable. Also: the fruit of any/

Quraat nannare ara nftan 11cad in their orean immatyre st
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emima

/'peps/,US.  /'pepar/
Forms: OE peopor (rare), OE pipcer (transmission error), OE pipor, OE pipur (rare

Frequency (in current use):
Etymology: A borrowing from Latin. Etymon: Latin piper.
< classical Latin piper, a loanword < Indo-Aryan (as is ancient Greek stérept ); compare Sa

L. The spice or the plant.
1.

a. A hot pungent spice derived from the prepared fruits (peppercorns) of
the pepper plant, Piper nigrum (see sense 2a), used from early times to
season food, either whole or ground to powder (often in association with
salt). Also (locally, chiefly with distinguishing word): a similar spice
derived from the fruits of certain other species of the genus Piper; the
fruits themselves.

The ground spice from Piper nigrum comes in two forms, the more pungent black pepper, produced
from black peppercorns, and the milder white pepper, produced from white peppercorns: see BLACK
adj. and n. Special uses 5a, PEPPERCORN 7. 1a, and wHITE adj. and n.” Special uses 7b(a).

2.

a. The plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to South Asia and also cultivated elsewhere in the tropics,
which has alternate stalked entire leaves, with pendulous spikes of small
green flowers opposite the leaves, succeeded by small berries turning red
when ripe. Also more widely: any plant of the genus Piper or the family
Piperaceae.

b. Usu. with distinguishing word: any of numerous plants of other
families having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.

c. U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

3. Any of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguigh~ausga ;
C. annuum Longum group, with elongated
taste, the source of cayenne, chilli powder,
perennial C. frutescens, the source of Taba
(more fully sweet pepper): any variety of -
group, with large, bell-shaped or apple-she
usually ripening to red, orange, or yellow a
cooked as a vegetable. Also: the fruit of any/

Quraat nannare ara nftan 11cad in their orean immatyre st
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/'peps/,US.  /'pepar/
Forms: OE peopor (rare), OE pipcer (transmission erper; OE pipor, QFpipglr (rare

Frequency (in current use):
Etymology: A borrowing from Latin JE#¥mon: Latin piper.
< classical Latin piper, a loanwe#@ < Indo-Aryan (as is ancienfreek sg#iept ); compare Sai

L. The spiceesrthe plant.
1.

hot pungent spice derived fro e prepapéd fruits (peppercorns) of
the pepper plant, Piper nigrum (g€e sense 24, used from early times to
season food, either whole or gFound to pogfder (often in association with
salt). Also (locally, chiefly#ith distingy#hing word): a similar spice
derived from the fruitg/0f certain oth#r species of the genus Piper; the
fruits themselves,

The ground spiggirom Piper nigrum copfies in two forms, the more pungent black pepper, produced
from black p#Hpercorns, and the milgér white pepper, produced from white peppercorns: see BLACK
adj. andf Special uses 5a, PEPPERGARN n. 12, and wHITE adj. and n.” Special uses 7b(a).

2.
he plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to Sou}f Asia and also cultivated elsewhere in the tropics,
which has alterpdte stalked entire leaves, with pendulous spikes of small
green flowerg/pposite the leaves, succeeded by small berries turning red
when ripe Also more widely: any plant of the genus Piper or the family
Piperacgfe.

su. with distinguishing word: any of numerous plants of other
amilies having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.

SEeNnse

a U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

6‘ ny of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguish~ausga" amms

C. annuum Longum group, with elongated
taste, the source of cayenne, chilli powder,
perennial C. frutescens, the source of Taba
(more fully sweet pepper): any variety of -
group, with large, bell-shaped or apple-she
usually ripening to red, orange, or yellow a
cooked as a vegetable. Also: the fruit of any/

Quraat nannare ara nftan 11cad in their orean immatyre st

Text Representation - Saeedeh Momtazi



epper e, 1emma

/'peps/,US.  /'pepar/
Forms: OE peopor (rare), OE pipcer (transmission erper; OE pipor, QFpipglr (rare

Pronu ACIOI, D

Frequency (in current use):
Etymology: A borrowing from Latin JE#¥mon: Latin piper.
< classical Latin piper, a loanwe#@ < Indo-Aryan (as is ancienfreek sg#iept ); compare Sai

L. The spiceesrthe plant.
1.

hot pungent spice derived fro e prepapéd fruits (peppercorns) of
the pepper plant, Piper nigrum (g€e sense 24, used from early times to
season food, either whole or gFound to pogfder (often in association with
salt). Also (locally, chiefly#ith distingy#hing word): a similar spice
derived from the fruitg/0f certain oth#r species of the genus Piper; the
fruits themselves,

The ground spiggirom Piper nigrum copfies in two forms, the more pungent black pepper, produced
from black p#Hpercorns, and the milgér white pepper, produced from white peppercorns: see BLACK
adj. andf Special uses 5a, PEPPERGARN n. 12, and wHITE adj. and n.” Special uses 7b(a).

2.
he plant Piper nigrum (family Piperaceae), a climbing shrub
indigenous to Sou}f Asia and also cultivated elsewhere in the tropics,
which has alterpdte stalked entire leaves, with pendulous spikes of small
green flowerg/pposite the leaves, succeeded by small berries turning red
when ripe Also more widely: any plant of the genus Piper or the family
Piperacgfe.

su. with distinguishing word: any of numerous plants of other
amilies having hot pungent fruits or leaves which resemble pepper ( 1a)
in taste and in some cases are used as a substitute for it.

SEeNnse
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a U.S. The California pepper tree, Schinus molle. Cf. PEPPER TREE n. 3.

6‘ ny of various forms of capsicum, esp. Capsicum annuum var.
annuum. Originally (chiefly with distinguish~ausga" amms

C. annuum Longum group, with elongated
taste, the source of cayenne, chilli powder,
perennial C. frutescens, the source of Taba
(more fully sweet pepper): any variety of -
group, with large, bell-shaped or apple-she
usually ripening to red, orange, or yellow a
cooked as a vegetable. Also: the fruit of any/

Quraat nannare ara nftan 11cad in their orean immatyre st
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Ludwig Wittgenstein (1889-1951)

"The meaning of a word is its use in the language"
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Zellig Harris (1954):

"If A and B have almost identical environments we say
that they are synonyms."
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1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp
patterns in language. By the end of the training process,

BERT has language-processing abilities capable of empowering
many models we later need to build and train in a supervised way.

g —

[
I Model:
I
I

I Dataset:

Objective:

N\

Semi-supervised Learning Step

I
C— BERT I
|
|
Wipps |
Predict the masked word
(langauge modeling) I
— e e — — -

2 - Supervised training on a specific task with a
labeled dataset.

/

l
|

I Model:
(pre-trained
I in step #1)

I Dataset:

Supervised Learning Step

75%  Spam
[ Classifier } .

25% | Not Spam

=~

_/

Class

Buy these pills Spam
Win cash prizes Spam
Dear Mr. Atreides, please find attached... Mot Spam
I I I I I —
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Use the output of the
masked word’s position
to predict the masked word

Randomly mask
15% of tokens

[CLS] Let's

Input

[CLS] Let’s

0.1% Aardvark

Possible classes:
All English words 10% Improvisation

0%  Zyzzyva

FFNN + Softmax ]

BERT

stick o} [MASK] n this skit
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Class
Label
—
BERT
I e N I S S
i e s
FE- EEE- A
Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

[seall & - [ ][ En [ ] [ac]

Class
Label

Lo -

BERT

« [a] -

| EIO.S]

i
ets) || Tok1 || Tok2 ] TokN
|
I

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, CoLA

—ar W W e W
= G

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

O  B-PER o
= >
c T, T, l
BERT
NN ER [ =]
i iy

[CLS) Tok 1 Tok 2 Tok N

[

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Output Probabilities
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Softmax

1

Linear

t

Add & Norm

Feed Forward

Nx

—5 Add & Norm

A

Add & Norm

Feed Forward

Multi-Head Attention
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i Add & Norm
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Nx

Multi-Head Attention

Masked Multi-Head
Attention
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. S |

Positional
Encoding
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Input Embedding
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Output Embedding
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Encoding
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Transformer
Encoder
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t
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Linear

t
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A
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-

Add & Norm Nx
9 Add & Norm I
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Input Embedding Output Embedding
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1 Transformer

Linear
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Generative Pre-Traming (GPT)
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Text Task
Prediction | Classifier

Layer Norm

G

Feed Forward

A

12x —

Layer Norm

é i Self-Attention Masked Self-Attention
’

Masked Multi

A
Self Attention l
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£
GPT-2 =
EXTRA c
LARGE E
~ ) !
G PT_ 2 a8 ( DECODER ) -
LARGE E
G PT‘ 2 rse ( DECODER )\ %
MEDIUM : S
G PT_ 2 fm( p— )\ o 5 E DECODER % z
SMALL .. a( DECODER ) a( DECODER ) =
12 DECODER ) 3 ( DECODER ) 3 ( DECODER )
cee 2 ( DECODER ) 2 ( DECODER ) 2 ( DECODER )
1( DECODER ) % ( DECODER )j % ( DECODER >) \1( DECODER ))

Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600
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Vision Transformer (ViT)

MLP
Head

Transformer Encoder
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GPT Series

®

GPT-2 1.5 Billion Parameters, 48 GPT-3.5 series 1.3 Billion to 175 Billions

GPT-1, 117 Million Parameters
12 Layers Model

@ GPT-1

layers Model

ChatGPT

(Based GPT3 train on the blend of text and code)
o

2020 2023

]

® ® O
2022

2
GPT-3 175 Billion Parameters GPT-4 ? Parameters
96 Layers Model Model Trained on (Text, Images)

o
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. GPT-Neo (6.7B), GPT-J (6B), GPT-NeoX (20B)

- LLaMA, 65B
- Mistral and Mixtral: 7B
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Masking Language model
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GPT-3 dataset The Pile dataset (GPT-Neo) MassiveText dataset (Chinchilla) =]
4998 tokens / 0.75TB 2478 tokens / 0.8TB 2.3T tokens / 10.5TB ———h
=
=—
e
N ——
N ——
o~ A e ) . ) [ — ]
— — - N
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]
it}
==
S
Infiniset dataset (LaMDA) Stability The Pile dataset RedPajama dataset GPT-4 (estimate)
2.8T tokens / 12.6TB 1.5T tokens / 5TB 1.2T tokens / 4TB 20T tokens / 40TB
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ChatGPT o

@OpenAI API RESEARCH

ChatGPT: Optimizing
Language Models
for Dialogue

We've trained a model called ChatGPT which interacts
in a conversational way. The dialogue format makes it
possible for ChatGPT to answer followup questions,
admit its mistakes, challenge incorrect premises, and
reject inappropriate requests. ChatGPT is a sibling
model to InstructGPT, which is trained to follow an
instruction in a prompt and provide a

detailed response.
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Dataset Quantity Weight in
(tokens) Training mix

Common Crawl 410 bilion 60%

WebText2 19 bilion 22%

Books1 12 bilion 8%

Books2 55 bilion 8%

Wikipedia 3 bilion 3%

- Saeedeh Momtazi
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Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

r “~
~/
Explain reinforcement

learning to a 6 year old.

;

&

Zz

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

™

w/
Explain reinforcement
learning to a 6 year old.

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

S

Write a story
about otters.
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GPT4

OpenAl

Gemini

Google

PaLM 2

Google

Llama 2

Meta

Vicuna

LMSYS Org

Claude 2

Anthropic
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Technology
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LMSYS Org

Falcon

Technology
Innovation

Institute

deepseek

deepseek
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User
Interface

Matching
Strategies

Query Log .
Database

Ranking
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Model Name
all-mpnet-base-v2
multi-qa-mpnet-base-dot-v1
all-distilroberta-v1
all-MiniLM-L12-v2
multi-qa-distilbert-cos-v1
all-MiniLM-L6-v2

multi-ga-MiniLM-L6-cos-v1

paraphrase-multilingual-mpnet-base-v2

paraphrase-albert-small-v2

paraphrase-multilingual-MiniLM-L12-v2

paraphrase-MiniLM-L3-v2

distiluse-base-multilingual-cased-v1

distiluse-base-multilingual-cased-v2

Performance Sentence
Embeddings (14 Datasets)

69.57
66.76
68.73
68.70
65.98
68.06
64.33
65.83
64.46
64.25
62.29
61.30

60.18

Performance Semantic Search
(6 Datasets)

57.02
57.60
50.94
50.82
52.83
49.54
51.83
41.68
40.04
39.19
39.19
29.87

27.35

1= Avg.
Performance

63.30
62.18
59.84
59.76
59.41
58.80
58.08
53.75
52.25
51.72
50.74
45.59

43.77

Speed

2800
2800
4000
7500
4000
14200
14200
2500
5000
7500
19000
4000
4000

Model
Size

420 MB
420 MB
290 MB
120 MB
250 MB
80 MB
80 MB
970 MB
43 MB
420 MB
61 MB
430 MB
480 MB
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