

Evaluating the Effect of Enhancing the Contrast of UAV Images on Photogrammetry Products

Soroush Motayeb¹ Soroush.motayyeb@ut.ac.ir

Seyed Arya Fakhri² aryafakhri@trn.ui.ac.ir

Masood Varshosaz ³ varshosazm@kntu.ac.ir

UAVs and applications

3D reconstruction

1/19

Challenges of Commercial and Cheap Cameras UAVs

- Image motion
- Bad lighting effects
- Poor texture
- Dead area

• Constraints on feature extraction

- Decrease density point cloud
- o Quality of the derived tie points

- The article's objective
 - This paper proposes a contrast enhancement technique to improve the accuracy of a photogrammetric model created using UAV images.

Histogram of an enhanced image

Proposed method

6/19

• Evaluation of the propose algorithm for contrast enhancement

 $E(I) = -\sum_{k=0}^{L-1} p(k) \log_2(p(k))$ Shannon entropy (E) (Tsai et al., 2008)

 $SD(I) = \sqrt{\sum_{k=0}^{L-1} (k - A(I))^2 \times p(k)}$ Standard deviation (SD) (Román et al., 2017)

 $\gamma(I) = \frac{2}{M \times N} \sum_{\nu=1}^{M} \sum_{\nu=1}^{N} \min\{p_{u\nu}, (1 - p_{\nu\nu})\}$ The linear blur index (Kaufmann, 1975)

 $CM(I) = \sqrt{\left(\sigma_{\alpha}^{2} + \sigma_{\beta}^{2}\right)} + 0.3 * \sqrt{\left(\mu_{\alpha}^{2} + \mu_{\beta}^{2}\right)}$ Colorfulness (CM) (Susstrunk & Winkler, 2003) $PSNR(I, I_E) = 10 \times log_{10} \frac{(L-1)^2}{MSE(I, I_E)}$ Peak signal-to-noise ratio (PSNR) (Hore & Ziou, 2010)

 $AMBE(I, I_E) = |A(I) - A(I_E)|$ Absolute Mean Brightness Error (AMBE) (Phanthuna, 2015)

 $CEF = \frac{colorfu \ ln \ ess(CM) \ of \ output \ image}{colorfu \ ln \ ess(CM) \ of \ input \ image}$ Color enhancement factor (CEF) (Susstrunk & Winkler, 2003)

• Performance of image contrast enhancement method

10/19

Dataset		E SD		PNSR AMB		γ	СМ	CEF	
Sakineh Paradise	Original	5.6998	25.8475	-	-	0.7237	10.1122	-	
	Reduced	5.0099	13.8547	10.1139	53.1455	0.7185	6.0003	0.6221	
	Enhanced	7.9256	76.9027	20.4598	12.1186	0.3901	26.3608	3.7709	
Qazvin	Original	5.6245	22.314			0.7155	10.3145	-	
	Reduced	5.0147	14.1731	10.2792	49.3874	0.7273	7.0993	0.5857	
	Enhanced	7.9332	76.9040	20.4668	12.2148	0.3946	26.3710	3.7643	
Helwan	Original	5.5321	27.145	-	-	0.7321	11.3189	-	
	Reduced	-	-	-	-	-	-	-	
	Enhanced	7.9358	76.9215	20.4514	12.1511	0.4001	26.1151	3.6778	

Table 1. Contrast enhancement of images in the data set in comparison to the original data and contrast reduction.

Performance of image contrast enhancement method

Methods	E	SD	PNSR	AMBE	γ	СМ	CEF
HE	5.7591	73.6543	12.0922	16.4611	0.4063	-	-
CLAHE	6.9114	29.3949	22.3057*	13.0904	0.6631	-	-
AMCE	7.9599*	75.2166*	12.0413	12.0873*	0.3921*	11.4620	1.6411
Proposed method	7.9358 🖈	76.9011*	20.4663*	12.1138★	0.3911*	26.3610 *	3.7743*

Table 2. Comparison of the proposed method's performance to that of other commonly used contrast enhancement methods.

Sparse point cloud

Sparse point cloud

Images with a low contrast

12/19

Images with enhanced contrast

Images with reduced contrast

Images with enhanced contrast

Comparison of Tie and Keypoints

reduced contrast

enhanced contrast

13/19

At different flying altitudes and in low contrast and enhanced modes, the number of tie points and reprojection error is shown in a diagram.

14/19

Diagram depicting the amount of error obtained on the check points at five different flight altitudes and two modes

DEM and orthophoto mosaic

Contrast enhancement images Low contrast images Contrast enhancement images Contrast reduction images Evaluating the Effect of Enhancing the Contrast of UAV Images on Photogrammetry Products

Orthophoto mosaic

17/19

Low contrast Enhanced contrast Evaluating the Effect of Enhancing the Contrast of UAV Images on Photogrammetry Products

Dataset	Reprojection error		Tie points		Che		s RMSE Z	2(m)	DEM resolution (cm/px)	
	Reduce	Enh.	Reduce	Enh.	Reduce	Enh.	Red.	Enh.	Reduce	Enh.
H 20	0.71	0.64	303,709	328,006	0.018	0.017	0.023	0.023	1.35	1.23
H 40	0.92	0.85	291,301	308,780	0.021	0.021	0.020	0.019	6.95	6.47
H 60	1.55	1.42	242,007	254,768	0.035	0.034	0.041	0.041	32.7	30.1
H 80	2.49	2.31	188,242	202,021	0.072	0.072	0.071	0.070	39.5	38.2
H 90	1.18	1.09	122,918	136,322	0.029	0.029	0.024	0.023	61.3	58.4

Table 3. Results from the production of photogrammetric products.

Evaluating the Effect of Enhancing the Contrast of UAV Images on Photogrammetry Products

18/19

- The results indicated that the number of tie points extracted after using the proposed contrast-enhancement technique to low-contrast images increased by approximately 10%, increasing the density of the point cloud
- Contrast enhancement of the images also results in a relative gain of approximately 2 cm/pix in the resolution of the Digital Elevation Model.

 Additionally, reprojection error was reduced by approximately 10%, although calibration parameters and check point error did not differ significantly between images with low contrast and images enhanced by the algorithm.

Evaluating the Effect of Enhancing the Contrast of UAV Images on Photogrammetry Products

19/19

Reference

[1] R. Maini, H. Aggarwal, A comprehensive review of image enhancement techniques, arXiv preprint arXiv:1003.4053.(2010)

[2] F. Bellavia, M. Fanfani ,C. Colombo, Fast Adaptive Frame Preprocessing for 3D Reconstruction, in: VISAPP (3), 2015, pp. 260-267.

 [3] G. Verhoeven, W. Karel, S. Štuhec, M. Doneus, I. Trinks, N. Pfeifer, Mind your grey tones: examining the influence of decolourization methods on interest point extraction and matching for architectural image-based modelling, in: 3D-Arch 2015: 3D Virtual Reconstruction and Visualization of Complex Architectures, Copernicus Gesellschaft, 2015, pp. 307-314.

[4] M. Gaiani, F. Remondino, F.I. Apollonio, A. Ballabeni, An advanced pre-processing pipeline to improve automated photogrammetric reconstructions of architectural scenes, Remote sensing, 8(3) (2016) 178.

[5] A. Ballabeni, F.I. Apollonio, M. Gaiani, F. Remondino, Advances in Image Pre-processing to Improve Automated 3D Reconstruction, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. (2015)

[6] C. Wu, Towards linear-time incremental structure from motion, in: 3D Vision-3DV 201 2013, 3International Conference on, IEEE, 2013, pp. 127-134.

[7] W. Hartmann, M. Havlena, K. Schindler, Predicting matchability, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 9-16.

[8] M. Dymczyk, E. Stumm, J. Nieto, R. Siegwart, I. Gilitschenski, Will it last? learning stable features for long-term visual localization, in: 3D Vision (3DV), 2016 Fourth International Conference on, IEEE, 2016, pp. 572-581.

Thank you for your kind considerations